

Table of Contents

 Articles

 Getting Started

 Introduction

 Installation

 Configuration

 User Interface

 Manage

 Template Records

 Settings

 Users

 Logs

 Troubleshooting

 Overview

 ConneX Service

 Changelog

 API

 API Getting Started

 API Overview

 GraphQL

 Schema

 Queries

 Objects

 Interfaces

 Enums

 Input Objects

 Scalars

 MQTT

 Automated Handler

javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

 DMS

 Programmer

 Machine Manager

 Common Types

Introduction
ConneX 3.0 Introduction
In addition to the job auditing and manufacturing traceability capabilities (delivering device programming results through customizable XML
templates) provided in prior releases, the latest ConneX version introduces an Event Model that you can access through the new ConneX API
(application programming interface) to expand the accessibility and scale of your programming operations data.

The latest ConneX leverages the Message Queuing Telemetry Transport (MQTT) protocol to exchange event messages between both internal
PSV system components and external client applications.

Internally, ConneX handles all of the data collection and event retrieval from underlying system components (ex. Automated Handler,
Programmers, and LumenX Data Management Software) and exposes them through an external API with a Publisher-Subscriber model:
consumers (ex. a custom dashboard/Web or MES application) call a specific ConneX API to register a callback URL that essentially subscribes
them to the desired event--each time the event occurs, ConneX notifies each consumer who registered/subscribed for event notification.

The ConneX API operates asynchronously to essentially detach internal system functions and events from external applications and
consumers, which in turn simplifies the development skills required to integrate your programming operations data with your MES or custom
Web application because developers need not know or learn the intricacies of how PSV Systems operate. API Consumers simply need to
create an HTTP URL (with some query string parameters to fetch and filter desired event fields).

Template Records/Manager is the component in ConneX that transforms ConneX data and delivers it through standard templates (such as
.XML and .JSON), making it easier for customers to view and export raw records using a template for storage on disk.

From custom real-time dashboards for programming operations to data integration with MES applications, the latest ConneX provides
increased visibility and control over your programming operations to reduce the burden and cost of managing your programming systems.
The latest ConneX maintains backwards-compatibility for existing ConneX users who are now collecting and analyzing their programming
data but also makes it easier for all users to access more data because it features a commonplace yet flexible Web service over standard
HTTPS as the API Provider.

The ConneX API conforms with the MQTT Version 5.0 OASIS Standard, which you can reference at https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

Note
The ConneX API returns MQTT data as a real-time feed of Automated Handler, LumenX/FlashCORE Software, and Programmer events (which
are all persisted by Machine Manager in the Audits database for ConneX). Therefore, if any disruption occurs (ex. ConneX service goes offline
during a job) then events may be lost and retry functions must be implemented for MQTT (and/or any missed events must be retrieved from
the GraphQL API, which provides historical data).

Requirements
This section describes the software requirements for running Machine Manager and ConneX Server.

Machine Manager Requirements
To use the latest ConneX version, each Machine Manager computer must meet the following minimum requirements.

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Software Application
Version Notes

Windows 10 operating system Pro Either 32-bit or 64-bit

ConneX Machine Manager Latest Supports x86 and x64

Automated Handler (AH700/CH700) 3.3.x keep IP address as 127.0.0.1; default Port is TCP 9002

For more information about Automated Handler software, see Automated Handling software.

ConneX Server Requirements
To use the latest ConneX version, the ConneX Server must meet the following minimum requirements.

Software
Application Version Notes

Windows 10
operating system

Pro x64 only

or Windows Server
2016/2019/2022

x64 only

ConneX Server Latest x64 only

Data I/O License
Manager

1.0.0.61 requires .NET Framework 4.7.2

Chrome browser 100.0.x browser cookies required for user login/authentication (supports either Allow all cookies or Block third-
party cookies; does not support Block all cookies); Internet Explorer NOT supported

Installation
This page provides step-by-step instructions on installing the latest ConneX version and establishing proper communication between each
Machine Manager instance and the ConneX Server.

The latest ConneX version provides separate installers for ConneX Server and Machine Manager: install ConneX Server on a centralized
'data reporting' computer, then install Machine Manager on each 'client' computer (essentially, the Handler/Host PC in a PSV System). This
separation is designed to optimize the management and handling of data and event collection from system components. By running
ConneX Server on a separate PC, data can be aggregated and analyzed in a central location while the Machine Manager(s) focuses on data
aggregation and event messaging between ConneX and various PSV system components.

Before proceeding with installation, ensure the computer(s) meet the ConneX requirements as described at the bottom of the Introduction
page.

Machine Manager Installation
Run the setup wizard for Machine Manager to install the Machine Manager Service:

ConneX Machine Manager Service, for handling data aggregation and event messaging between multiple PSV Systems.

Machine Manager requires specific network ports to be open for proper communication with ConneX Server; the setup wizard for Machine
Manager automatically opens the following ports in Windows Defender Firewall:

Service/Inbound Rule Required Port
Machine Manager gRPC port TCP 5000
Machine Manager LumenX Discovery Port ReceiveUDP 9081
Machine Manager LumenX WCF port TCP 9000
Machine Manager MQTT port TCP 9002
Machine Manager SSDP port UDP 1900

Note
If you change the MQTT port(s), then also restart the ConneX Machine Manager Service (see below).

After installing Machine Manager, reboot and double-check that the Machine Manager service is running on the PSV Handler/Host
computer:

1. Click Start > type Run (hit ENTER) > services.msc
2. In the Services window, start the following service if needed (right-click > Start):

ConneX Machine Manager Service
3. If the Machine Manager Service is not already started (and set to start automatically):

Right-click the service
Select Start
Right-click the service again
Click Properties
On the General tab, from the Startup Type drop-down list, select Automatic

Note
Beyond this point, you remotely manage each Machine Manager instance/client/computer from the ConneX Server because Machine
Manager is essentially "headless" (requires no user interface).

Handler Software Configuration
To configure the "AH700/CH700" handler software of a PSV System (Machine Manager instance) for ConneX, keep the same IP address of
127.0.0.1 with default port TCP 9002. If you change the Machine Manager port, then also reflect the same change in the 'WinAH400.ini'
file.

1. On the Handler/Host PC of a PSV System (Machine Manager instance), open File/Windows Explorer to the following directory:
If Machine Manager is running on a PSV7000, open 'C:\AH700'
If Machine Manager is running on a PSV3000/3500/5000, open 'C:\CH700'

2. Locate the WinAH400.ini file and open it with a text editor (such as Notepad).
3. Find the following lines in the file. If they are not present, then add them:

4. Save the change(s).

ConneX is now set to communicate with the respective handler software (AH700 or CH700) over the specified IP address and port number.

ConneX Server Installation
Run the setup wizard for ConneX Server to install the main ConneX Service and Data I/O License Manager:

ConneX Service, the primary ConneX handler service for managing data and event collection from system components.
Data I/O License Manager, for validating the propriety of authorized Data I/O software products, features, and services.

The centralized ConneX Server requires specific network ports to be open for proper communication with each Machine Manager instance;
the setup wizard for ConneX Server automatically opens the following ports in Windows Defender Firewall:

Service/Inbound Rule Required Port
ConneX internal MQTT port TCP 9002
ConneX MQTT port TCP 1883
ConneX SSDP port UDP 1900
ConneX web port TCP 5001
License Manager Discover Port ReceiveUDP 9081
License Manager gRPC Service Port TCP 9003
License Manager WCF Service Port TCP 9000
License Manager Web Port TCP 5002
LicenseManagerServer UDP any
LicenseManagerServer TCP any
Template Manager MQTT port TCP 1883
Template Manager web port TCP 5004

Note
If you change the MQTT port(s), then also restart the ConneX Machine Manager Service (see below).

After installing ConneX Server, reboot and double-check that the ConneX services are running:

1. Click Start > type Run (hit ENTER) > services.msc
2. In the Services window, start the following services if needed (right-click > Start):

CheckConneX=true
ConneX3=true IP=127.0.0.1 Port=9002

ini

ConneX EventStoreDB
ConneX PostgreSQL + TimescaleDB Service
ConneX Service
DataIO License Manager Service

3. If any of the four ConneX services are not already started (and set to start automatically):
Right-click the service
Select Start
Right-click the service again
Click Properties
On the General tab, from the Startup Type drop-down list, select Automatic

4. Skip this step if installing ConneX Server on a Windows 10 computer. Else for Windows Server 2016/2019/2022:

Click the Recovery tab, then set both First failure and Second failure to the option Restart the Service.

Click Apply and then OK.

Activate ConneX License
After installing Machine Manager and ConneX Server, ensure ConneX has sufficient licenses available to satisfy each Machine Manager
instance/connection.

1. In the left pane, click Settings, then click Licensing.
2. On the License page, ensure Available Connections is greater than one (and/or equal to the number of expected Machine

Manager connections).

Note
You may need to refresh the License page to display any modifications to ConneX licensing.

3. If Available Connections shows unexpected information and/or to access Data I/O License Manager directly, click the License
Manager link.

4. On the License Information page, you can activate, deactivate, and refresh your Data I/O software licenses.

Note

You may need to refresh the License Information page to display any modifications to ConneX licensing.

With your Machine Manager(s) and ConneX Server installed, proceed to setup the programmers as described in the Configuration steps.

Configuration
This page provides instructions for configuring the programmers of a PSV System (Machine Manager instance) from the ConneX Server. To
establish connectivity between ConneX Server and each Machine Manager/PSV System, complete the steps under Adding a New System.

Configure Programmer Interface
1. On the Manage page, select a PSV System to configure.
2. In the system tile, click the Configuration tab.
3. Now select the appropriate network interface for programmer communication:

For LumenX, click the LumenX options drop-down arrow, then select the appropriate option from the Programmer

Discovery Network Interface drop-down list.

For FlashCORE, click the FlashCORE III options drop-down arrow, then select the appropriate option from the Programmer

Discovery Network Interface drop-down list.

4. For FlashCORE only (skip this step for LumenX): Ensure the FlashCORE III communication port value (default is 7027) matches the
programmer port number configured in TaskLink:

Start TaskLink for Windows
Click the System menu (at top), then click Options.

In the Programming System Options dialog box, click the Communication tab, and then confirm the Programmer Port

Number matches the value in ConneX.

5. To change the name of a programmer (which ConneX writes to logs and records), click the Overview tab, then select the desired

programmer (under the Programmers section).

6. In the programmer tile, click the Configuration tab, then expand the LumenX options (or FlashCORE III options) drop-down list.

Check Programmer Connectivity
1. Return to the system tile (and its Overview tab), then under the Programmers section, confirm that the list shows the

programmer(s) you intend to use for ConneX; else click Discover.

2. If the desired programmer does not appear in the list after running automatic discovery, then click Add (next to Discover button).

3. In the Add Programmer window, select the Programmer Type (FC or LX), specify its IP address, type a Programmer Name
(optional), and then click Add.

4. Now in the Programmers section, confirm that the added programmer appears in the list with a Status of Online (green color).

Configure Machine Manager options
To change the Machine Name, Factory Name, or Handler Type (all of which ConneX writes to logs and records):

1. On the Manage page, select a PSV System/Machine Manager to configure.
2. In the system tile, click the Configuration tab, then expand the Machine Manager options drop-down list.

3. Click Save.

Configure MQTT service options
Similarly, click the MQTT service options drop-down list to configure the Machine Manager MQTT port (default is TCP port 9002), and

then click Save.

Manage
The Manage page displays all entities (such as systems, handlers, programmers, and associated programs) for the current instance. The
system and programs are organized in two views: tree view and flat view.

In the tree view, the systems are listed first and will expand, making it easy to see the hierarchical relationship between systems and their
associated programmers. This view is useful for understanding the layout of your programming systems and navigating quickly to the
system and programmer of interest.

In contrast, the flat view displays all systems and their associated programmers on the same level, making it easier to see all the systems
and programmers at once. This view is helpful when searching for a particular system or programmer and is a more condensed
representation of the programming systems.

Entity List
The manage grid shows the following for each entity (essentially a PSV System or programmer):

Column Description

Name The given name of the entity.

Online Status Indicates the status of the entity (Online or Offline).

Type Indicates the type of the entity (ex. PSV7000, PSV5000, etc.).

Adoption Status Indicates the adoption status of the system.

Online Statuses
Entities (PSV Systems or programmers) can have the following online statuses:

Status Description

Online The entity is online and is operational (sending information to ConneX Server)

Offline The entity is offline and is not operational (NOT sending data to ConneX Server)

Types
Systems can have the following types:

Type Description

Programming System types Desktop
PSV3000
PSV3500
PSV5000
PSV7000

Programmer types FlashCORE III
LumenX

Type Description

Adoption Statuses
Systems can have the following adoption statuses:

Type Description

System adoption status Adopted: System is currently adopted and in use.
Not Adopted: System is NOT adopted and is available for adoption.
Adopted by other: System is adopted and in use by another entity.

Configuring an Entity
Clicking a row on the Manage page opens the Entity sidebar/tile (in the right pane), which allows you to view configuration and entity

information.

The system tile helps you effectively monitor and manage your system by offering a clear view of your system's status, type, and adoption
status at the top of each tile.

Overview tab
On the Overview tab, you can find more details about your system configurations and installed software. For example, expanding the
System Information panel displays the following information:

Attribute Description

Hostname The system's assigned hostname.

Known IP Address(es) The IP address(es) assigned to the system.

Operating System The system's operating system.

Machine Manager Version The version of the Machine Manager software.

Machine Manager Identifier The unique identifier for this system.

Factory Name The name of the factory where the system is used.

While expanding the Installed Software panel displays a list of installed software including name, version, and installation directory.

The Programmers section allows you to easily add, discover, and manage programmers connected to the system. For information about
configuring programmers, see Configuration.

The Events section at bottom keeps track of system events in a table to simplify system monitoring activities.

Column Description

Timestamp The date and time when the event occurred.

Event Type The category of the event

Message A brief description of the event.

Click a row in the table to open a more detailed view of the event message (ex. additional information about the event and any related
actions).

Configuration tab
The Configuration tab lets you set options for the following (as described in the Configuration page):

LumenX options (Programmer Discovery Network Interface)
FlashCORE III options (FC3 communication port and Programmer Discovery Network Interface)
Machine Manager options (Machine Name, Factory Name, and Handler Type)
MQTT service options (Machine Manager MQTT port number)

Logs tab
The Logs tab allows you to remotely view and download Machine Manager logs for efficient troubleshooting and issue resolution.
Download the logs as a ZIP file to a directory of your choice, then review them on your local machine for in-depth analysis.

Adding a New System
From the Manage page, click Add Connection (+ icon) in the upper-right corner.

Note
The Available connections count on the Add system page indicates how many Machine Manager connections you can add with the
current license. Confirm you have available connections to proceed.

Step 1: IP Address
Enter the IP address of the PSV system in the provided field. If you're unsure of the IP address, here's how you can find it on a Windows
computer:

1. On the PSV system (Machine Manager instance) to add to ConneX Server, open the Command Prompt by typing cmd in the
Windows search bar, then select Command Prompt from the results.

2. In the Command Prompt window, type the command ipconfig, and press Enter.
3. Look for the IPv4 Address entry for the network adapter used to connect to the PSV system (which is the IP address you enter into

the Add system wizard).

Step 2: System Details
If the connection to the PSV system is successful, the wizard displays a table with details of the new system. Confirm the table shows the
intended system to add; else click Back to confirm the IP address.

Detail Description

System Name The ConneX given name of the system.

Machine Serial Number The serial number of the system.

Hostname The name of the host used by Windows.

System Type The type of system (e.g. PSV7000, PSV5000, etc.)

Step 3: Options
Set additional options to customize the connection process.

Option Description

Adopt system after
connecting?

Enable to adopt the system and allow ConneX Server to start receiving messages immediately; Disable to simply
add the system now (ex. ConneX data transfer to be enabled later)

System Name Type the name of the system.

Option Description

Step 4: Finish
If the setup wizard displays the following page, then the Machine Manager system is successfully added to ConneX Server. At this point,

you can click Finish to exit the wizard.

However, in some cases, a warning message might appear indicating that the adoption was not successful because the system is already
adopted. In such cases, please follow the troubleshooting steps for System is adopted by another ConneX Service

A notification in the lower-right corner also indicates the success or failure of the add system operation.

To ensure/enable ConneX data transfer for the added Machine Manager, you must Adopt it from the ConneX Server (if not already
adopted):

1. From the Managepage, click the new Machine Manager/PSV System.

2. In the selected system tile, click Adopt.

Disable Machine Manager Data Transfer
To disable ConneX data transfer, go to the Manage page and select/click the PSV System for which to stop/pause data transfer.

In the system tile, click Forget.

Removing a programming system/programmer
1. From the Manage page, locate the entity to remove and click Delete (garbage can icon).

2. In the Remove Entity dialog, click OK to confirm the removal.

Caution
Removing an adopted programming system results in future records and events being lost. Proceed with caution.

Template Records
This page displays a list of your raw programming records (if any).

For more information, see the "Template Records" section on the Settings.

Settings
The Settings page displays a list of configuration parameters for ConneX.

Licensing
This section shows the software licensing information for ConneX service, including:

License type (ex. Trial or Perpetual for ConneX Service)
Available Connections (remaining number of client connections, or max connections minus used connections; a client connection is
an instance of the Machine Manager Service connecting to a centralized ConneX Service)
Maximum Connections (number of client connections licensed; possible number of Machine Manager Service connections to ConneX
Service)
ConneX Annual Maintenance Contract (expiration date for Machine Manager connections to ConneX Service)

To export or download a copy of the ConneX data for SentriX jobs, this section also provides a Download SentriX Report button.

For more information about your Data I/O software product licenses (including ConneX):

1. On the Handler/Host PC (of your PSV System), open a browser window (Chrome 100.0.x recommended) to the Data I/O License
Manager at http://localhost:5002/.

2. On the License Information page, under the ConneX section, click ConneX Service to expand and view its license details.

Users Settings
The Users Settings section shows the password options for user accounts:

Field Description

Password requires digit User password requires at least one digit

Password requires lowercase User password requires at least one lowercase character

Password requires uppercase User password requires at least one uppercase character

Password requires non alphanumeric User password requires at least one non-alphanumeric character

Password minimum length Type the minimum number of characters required for user passwords

MQTT Connections
The MQTT Connections section shows the configuration for MQTT ports:

Field Description

MQTT Broker Port The TCP port number for the ConneX MQTT Broker (default TCP port is 1883)

MQTT Machine Manager Client Port The TCP port number for the ConneX MQTT Machine Manager Client (default TCP port is 9002)

Template Records
In addition to accessing ConneX data through MQTT and GraphQL queries, the latest ConneX version also allows users of previous
versions to access ConneX data through standard templates for backwards-compatibility. The Template Records component and service
publishes ConneX data through templates for legacy users of Template Manager in previous versions.

First, you create a custom template (such as .XML and .JSON) to define the specific data fields to collect. Then as devices are programmed,
ConneX writes the programming statistics to the template-based record to effectively capture the user-specified data points.

By publishing the specified fields data (ex. programming statistics) through standard templates, ConneX simplifies the process of integrating
your programming data into your Manufacturing Execution System (MES) or other data processing application(s).

The Template Records page displays a list of your raw programming records while any customized template records are stored in
C:\ProgramData\DataIO\ConneX\TemplateManager\Audit\Output. To modify template settings, click Settings (in the left navigation
pane), then click Template Manager.

The Templates section lists your current templates and allows you to add a new template (using the Plus button at top), delete an existing
template (using the corresponding Trash button in right column), or specify a different file for an existing template (using Pencil button in
right column).

http://localhost:5002/

Customize a Default Template
Complete the following steps to create a custom template (using .XML as an example) using the fields from a default template.

1. Start Windows/File Explorer and navigate to C:\ProgramData\DataIO\ConneX\TemplateManager\AuditTemplates.
2. Right-click anywhere in the right pane, point to New, click Text Document, type a name for the custom template, and then press

ENTER.

3. Open a default template and copy all of its fields.

4. Now open your custom template file and paste the default fields into your custom template, then Save your template.
5. Modify the fields in your custom template as desired (ex. add, remove, reorder fields), then Save.
6. Finally, rename the custom template file from .TXT to .XML.

Add Custom Template to ConneX
Complete the following steps to add your custom template (using .XML as an example) to ConneX.

1. Open a browser window to http://localhost:5001 and login.
2. In the left pane, expand Settings, and then click Template Manager.
3. On the Templates page, click the add template (+) button near the upper-left corner.
4. Type a Template Name, and then click Select File.
5. In the Open dialog box, browse to and select your custom template, then click Open.
6. Click Save.

Set ConneX to Use Added Custom Template
Complete the following steps to set your custom template as the format for ConneX to generate and output its programming statistics.

1. In the Templates table, click the Pencil icon/button for the specific template that you want to change (default templates cannot be
changed). For example:

2. Click the Select File button, browse and select your new custom template, and then click Open.

http://localhost:5001

3. In the right-most column, click Save.

4. Scroll down to the Settings section and from the Auto Generate Template drop-down list, select the custom template for the
respective programmer type (LumenX or FlashCORE).

Test Output to Custom Template
Before running a device programming job in production, first complete the following steps to test and ensure that your custom template is
working (that ConneX writes its programming data using the custom template you created and specified).

1. Run a job with Pass Limit of one or two devices.
2. After the job completes, return to http://localhost:5001, and click Template Records.
3. In the right pane, click the plus (+) button to expand the audit record.

http://localhost:5001

4. Now scroll down to view and confirm that ConneX displays your raw programming records data.

5. To view the same programming statistics through a customized template: a. Return to the Settings page, select a different template
(from the Auto Generate Template drop-down list) and Save. b. Now on the Template Records page, select the same record,
and click Export Using Active Template.

c. Repeat Step 3 above to view the same data in the new template (or go to
C:\ProgramData\DataIO\ConneX\TemplateManager\Audit\Output).

The Settings section allows you to review and/or modify existing Template Manager settings.

Field Description

Template Location The directory containing your template files

Auto Generate Output Enabled Check the box to enable automatic generation of audit output data; uncheck to disable

Auto Generate Output The directory containing your automatically generated audit output data

LumenX Auto Generate Template Specifies which template to use for LumenX jobs

LumenX Template Output Name Specifies the output format for field records in the generated LumenX template

FlashCORE III Auto Generate Template Specifies which template to use for FlashCore jobs

FlashCORE III TEmplate Output Name Specifies the output format for field records in the generated FlashCORE template

Field Description

Overview
ConneX provides a built-in user authentication system to prevent unauthorized access and modification of the system.

Roles
ConneX has the following roles that users can be assigned:

Roles Description
AdminUnrestricted access to the ConneX portal.
User Read-only access to most pages.

Manage
Click here to be redirected to the user management page. There you will find a list of users for this instance of ConneX.

Adding a new user ADMIN

1. From the Users page, click the Add User button in the upper right.
2. Set the username.
3. (optional) Enter first and last name.
4. Enter a password that conforms to the settings found here.
5. Choose a role from the available list of roles.
6. Click the Save button.

Editing a user ADMIN

1. From the Users page, find the user in the table and click the Edit User button.
2. (optional) Enter first and last name.
3. (optional) Enter a new password that conforms to the settings found here.
4. Choose a role from the available list of roles.
5. Click the Save button.

Note
The Administrator user's role cannot be changed.

Deleting a user ADMIN

1. From the Users page, find the user in the table and click the Delete User button.
2. Confirm the removal by clicking the Delete button in the dialog.

Note
The Administrator user cannot be deleted.

file:///users

Logs
The Logs node shows a list of system events that you can sort and filter using the column controls at top.

To export a ZIP file of ConneX system log files, click the Download button, then choose a desired directory and filename.

Overview
The Troubleshooting section provides guidance for addressing common issues that may arise while using the software. This section aims to
help users quickly identify and resolve problems that may impact their workflow, minimize downtime, and ensure that the software
operates as intended.

The troubleshooting guidance in this section is organized into different categories that correspond to specific areas of the software. Each
category contains a list of issues, along with a description of the symptoms and recommended solutions.

Before proceeding with any troubleshooting steps, ensure that you have reviewed the relevant documentation and have met all software
requirements. In some cases, issues may be resolved simply by reviewing the documentation or performing basic troubleshooting steps.

If you are unable to resolve the issue using the guidance provided in this section, please contact technical support for additional assistance.

file:///E:/ws/CX/docs/help/docfx/_site_pdf/_raw/_site_pdf/about/contact-us.md

ConneX Service
Below you will find common issues found with the ConneX Service.

System is adopted by another ConneX Service
If you encounter an error indicating that a system has already been adopted by another ConneX service, there are two options to resolve
this issue.

Option 1: "Forget" the System in the other instance of ConneX Service ADMIN

This option requires access to the other instance of ConneX Service that has already adopted the system. Follow these steps to "forget"
the system in the other instance of ConneX Service:

1. Open the other instance of ConneX Service that has already adopted the system.
2. Select the system that you want to adopt in the desired ConneX Service.
3. Click the Forget button to remove the system from the previous ConneX Service instance.
4. Once the system has been forgotten, it can be adopted by the desired ConneX Service.

Option 2: "Force Adoption" as an Administrator ADMIN

This option allows the system to be adopted by the desired ConneX Service without requiring access to the other instance of ConneX
Service. However, it is important to note that forcing adoption may result in the loss of data. Follow these steps to force the adoption of
the system:

1. Open the ConneX Service on the system that you want to adopt in the desired ConneX Service.
2. Click the "Force Adoption" button.

Warning
Using the "Force adoption" option may result in the loss of data for the system, as any existing programming statistics for the system in
the previous instance of ConneX Service will not be transferred. It is recommended to use this option only as a last resort and to ensure
that all necessary backups are in place before proceeding.

No ConneX license found
If ConneX Server displays the "No ConneX license found" message), then complete the "Activate ConneX License" steps at the bottom of
Installation. If ConneX service is running on a Windows Server 2016 computer, ensure you install Microsoft .NET Framework 4.7.2.

Change Log
This page lists all notable changes to ConneX.

[3.0.4] - (April, 2023)

 New Features
ConneX system installation is split into Machine Manager installer for PSV/Desktop systems and ConneX Software for ConneX host
Add Handler wizard guides user through adding and adopting a handler.
Tree View shows a hierarchical view, which makes it easier to see which programmers belong to which handler.
Added support for PSV 3500 systems.

 Enhancements/Bug Fixes
Improvements to Help documentation.
Template Manager record functionality fully integrated into ConneX service.
SentriX reports show number of FlashCORE and LumenX devices programmed.
Available fields in FlashCORE records fully populated.
Handler and Programmer names can be changed for easier differentiation.
Fixed an issue where switching adapters may cause a system to become unresponsive.
ConneX Software now supports Windows Server 2016, 2019, and 2022.
Improved performance for displaying programming records in ConneX.

[3.0.3] - (February 3, 2023)

 New Features
License Manager updated to 1.0.0.61.

 Enhancements/Bug Fixes
Increased querying performance of metrics.
Updated licensing for Machine Manager connections to ConneX Service.
Implemented demo/eval mode with restricted functionality (ex. Trial or Expired license, exceeded number of available connections...).
Added UI notifications/indicators for Trial, Expired, and No license.

[3.0.0] - (July 6, 2022)

 New Features
License Manager updated to 1.0.0.60.
Added support for MQTT API protocol for real time data.
Added support for GraphQL API for querying historical data.
Added UI to support configuration of system.

[2.0.1.133] - (March 15, 2021)

 New Features
Added support for larger log files to accommodate 32K serial numbers from LumenX DMS.
Added support for larger templates.
Updated License Manager to version 1.0.0.47 to match version in LumenX DMS.

 Bug Fixes
Improved SentriX billing performance.
Removed support for double quotes in fields.

[2.0.0.87] - (March 19, 2019)

 Bug Fixes
Fixed audit record parsing stability.

[2.0.0.83] - (November 11, 2018)

 Bug Fixes
ConneX now unlocks and polls any FlashCORE programmers that were previously registered/locked to another machine.

API Overview
ConneX provides API hooks using the following standards:

GraphQL
MQTT

GraphQL
ConneX provides a GraphQL endpoint for querying data.

What is GraphQL?

GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing
data. GraphQL provides a complete and understandable description of the data in your API, gives
clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs
over time, and enables powerful developer tools.

Source: https://graphql.org/

To get started with GraphQL in ConneX, expand GraphQL (in the left navigation pane) and review the available types of data fields you can
retrieve from the GraphQL API in ConneX. Then create a list of desired fields and begin to construct queries to retrieve them from ConneX.

To test your queries:

1. Visit http://localhost:5001/graphql from the ConneX Server.
2. Paste your query in the left pane, and then click Run.
3. Review the query results/output in the right pane. For example:

4. For help on modifying your queries, click the Operations drop-down arrow (near the top-left corner) to access the Schema

Reference and Definition.

5. Similarly, click the Response drop-down arrow (in the right pane) for more information about how ConneX processed the query.

https://graphql.org/
http://localhost:5001/graphql

6. After crafting and perfecting your queries as desired, paste them into your manufacturing execution system (MES) or other
application and test the queries again from there.

MQTT
ConneX provides an MQTT broker that your MES (or other data processing application) can subscribe to.

What is MQTT?

MQTT is a lightweight, publish-subscribe network protocol that transports messages between
devices. The protocol usually runs over TCP/IP, however, any network protocol that provides ordered,
lossless, bi-directional connections can support MQTT. It is designed for connections with remote
locations where a resource constraints exist or the network bandwidth is limited. The protocol is an
open OASIS standard and an ISO recommendation (ISO/IEC 20922).

Source: https://en.wikipedia.org/wiki/MQTT

To get started with MQTT in ConneX, expand MQTT (in the left navigation pane) and review the available types of event notifications to
which you can subscribe from the MQTT API in ConneX. Then create a list of desired events and begin to construct queries to receive them
from ConneX.

To test your queries:

1. Install MQTT Explorer and launch it.
2. Add a new connection by specifying the appropriate host settings, then click Connect. For example:

https://en.wikipedia.org/wiki/MQTT

3. In the left pane treeview, navigate to the desired event.

4. In the right pane, scroll down to the Publish section, and confirm/modify the event query in the Topic box. For example:

5. Select a desired output format (raw, xml, or json) and click Publish to run the event query.

6. Review the query results/output in the right pane.
7. After crafting and perfecting your queries as desired, paste them into your manufacturing execution system (MES) or other

application and test the queries again from there.

Schema

schema {
 query: Query
}

type AdapterMetrics {
 id: Long!
 identifier: String
 timeStamp: DateTime!
 programmingDuration: Int!
 verifyDuration: Int!
 blankCheckDuration: Int!
 eraseDuration: Int!
}

"Represents an adapter for a programmer."
type AdapterModel {
 "The database key for the adapter."
 adapterKey: Int!
 "The associated entity for this adapter."
 entity: Entity
 "The last associated programmer for this adapter."
 programmer: ProgrammerModel
 "The adapter's part number identifier."
 adapterId: String
}

type AdapterStatistics {
 adapterId: String
 cleanCount: UnsignedInt!
 lifetimeActuationCount: UnsignedInt!
 lifetimeContinuityFailCount: UnsignedInt!
 lifetimeFailCount: UnsignedInt!
 lifetimePassCount: UnsignedInt!
 socketIndex: Int!
 adapterState: AdapterState!
}

"Information about the offset pagination."
type CollectionSegmentInfo {
 "Indicates whether more items exist following the set defined by the clients arguments."
 hasNextPage: Boolean!
 "Indicates whether more items exist prior the set defined by the clients arguments."
 hasPreviousPage: Boolean!
}

"Represents an abstract component that is connected to the ConneX system."
type Entity {
 "The database key for the entity."
 id: Int!
 "The unique identifier for the entity."
 entityIdentifier: String
 "The type the entity represents."
 entityType: EntityType!
 "The given name of the entity."
 entityName: String
}

"Represents a PSV system connected to ConneX."
type Handler {
 "The database key for the PSV system."
 handlerId: Int!
 "The associated entity for this PSV system."
 entity: Entity
 "The associated programmers for this PSV system."
 programmers: [ProgrammerModel]
 "The PSV system's type (e.g. PSV2800\/3000\/5000\/7000)."
 handlerType: HandlerType!
 "The PSV system's IP address."

GraphQL

 "The PSV system's IP address."
 ipAddress: String
 "The PSV system's computer host name."
 hostName: String
 "The PSV system's associated factory."
 machineFactory: String
}

type HandlerMetrics {
 id: Long!
 identifier: String
 timeStamp: DateTime!
 jobState: String
 uptime: Int
 jobProcessingTime: Int
 unitsPerHour: Int
 yield: Float
}

type HandlerStatistics {
 currentJob: String
 availability: Float!
 uptime: String
 totalPass: Int!
 totalFail: Int!
 systemYield: String
 programmerYield: String
 handlerYield: String
 uPH: Int!
 jobCompletionEstimate: String
}

type LicenseModel {
 licenseType: String
 maxConnections: Int!
 availableConnections: Int!
 conneXAnnualMaintenanceContract: DateTime!
 timedLicenseExpiration: DateTime!
}

type MessageModel {
 topic: String
 contentType: String
 timestamp: DateTime!
 messageModelId: UUID!
 payload: [Byte!]
 payloadAsString: String
}

type MessageModelCollectionSegment {
 items: [MessageModel]
 "Information to aid in pagination."
 pageInfo: CollectionSegmentInfo!
 totalCount: Int!
}

type ProgrammerModel {
 programmerId: Int!
 entity: Entity
 handler: Handler
 adapters: [AdapterModel]
 ipAddress: String
 programmerType: ProgrammerType!
}

type Query {
 "Get the last received MQTT message."
 message: MessageModel
 "Get all MQTT messages."
 messages(skip: Int take: Int where: MessageModelFilterInput order: [MessageModelSortInput!]): MessageModelCollectionS
egment
 "Get the latest statistics for the specified adapter."
 latestAdapterStatistics("The adapter's unique identifier." entityIdentifier: String): AdapterStatistics
 "Get the latest statistics for the specified PSV system."

 "Get the latest statistics for the specified PSV system."
 latestHandlerStatistics("The handler system's unique identifier." entityIdentifier: String): HandlerStatistics
 handlerMetrics("The handler's unique identifier." handlerIdentifier: String "The time bucket to aggregate metrics ove
r." timeBucket: String "The interval of time to query." interval: String): [HandlerMetrics]
 adapterMetrics("The adapter's unique identifier." adapterIdentifier: String "The time bucket to aggregate metrics ove
r." timeBucket: String "The interval of time to query." interval: String): [AdapterMetrics]
 "Look up all the known entities connected to this instance of ConneX."
 entities: [Entity]
 "Look up all the known entity types that can be connected to this instance of ConneX."
 entityTypes: [EntityType!]
 "Look up all the known PSV systems connected to this instance of ConneX."
 systems: [Handler]
 "Look up a singular PSV system by its database ID."
 system("The database identifier of the handler." databaseId: Int!): Handler
 "Look up all the known PSV system types that can be connected to this instance of ConneX."
 systemTypes: [HandlerType!]
 "Look up all the known programmers connected to this instance of ConneX."
 programmers: [ProgrammerModel]
 "Look up all the known programmer system types that can be connected to this instance of ConneX."
 programmerTypes: [ProgrammerType!]
 "Look up all the known adapters connected to this instance of ConneX."
 adapters: [AdapterModel]
 "Get the license information for the ConneX Service"
 license: LicenseModel
}

input ComparableByteOperationFilterInput {
 eq: Byte
 neq: Byte
 in: [Byte!]
 nin: [Byte!]
 gt: Byte
 ngt: Byte
 gte: Byte
 ngte: Byte
 lt: Byte
 nlt: Byte
 lte: Byte
 nlte: Byte
}

input ComparableDateTimeOperationFilterInput {
 eq: DateTime
 neq: DateTime
 in: [DateTime!]
 nin: [DateTime!]
 gt: DateTime
 ngt: DateTime
 gte: DateTime
 ngte: DateTime
 lt: DateTime
 nlt: DateTime
 lte: DateTime
 nlte: DateTime
}

input ComparableGuidOperationFilterInput {
 eq: UUID
 neq: UUID
 in: [UUID!]
 nin: [UUID!]
 gt: UUID
 ngt: UUID
 gte: UUID
 ngte: UUID
 lt: UUID
 nlt: UUID
 lte: UUID
 nlte: UUID
}

input ListComparableByteOperationFilterInput {
 all: ComparableByteOperationFilterInput

 none: ComparableByteOperationFilterInput
 some: ComparableByteOperationFilterInput
 any: Boolean
}

input MessageModelFilterInput {
 and: [MessageModelFilterInput!]
 or: [MessageModelFilterInput!]
 topic: StringOperationFilterInput
 contentType: StringOperationFilterInput
 payload: ListComparableByteOperationFilterInput
 timestamp: ComparableDateTimeOperationFilterInput
 messageModelId: ComparableGuidOperationFilterInput
}

input MessageModelSortInput {
 topic: SortEnumType
 contentType: SortEnumType
 timestamp: SortEnumType
 messageModelId: SortEnumType
}

input StringOperationFilterInput {
 and: [StringOperationFilterInput!]
 or: [StringOperationFilterInput!]
 eq: String
 neq: String
 contains: String
 ncontains: String
 in: [String]
 nin: [String]
 startsWith: String
 nstartsWith: String
 endsWith: String
 nendsWith: String
}

enum AdapterState {
 NOT_INSERTED
 INSERTED
 VALIDATED
 VALIDATE_FAILED
 UNKNOWN
 POWER_FAULT
}

enum EntityType {
 HANDLER
 PROGRAMMER
 ADAPTER
 JOB
}

enum HandlerType {
 DESKTOP
 PSV2800
 PSV3000
 PSV5000
 PSV7000
}

enum ProgrammerType {
 FLASH_CORE
 LUMEN_X
}

enum SortEnumType {
 ASC
 DESC
}

"The `@defer` directive may be provided for fragment spreads and inline fragments to inform the executor to delay the e
xecution of the current fragment to indicate deprioritization of the current fragment. A query with `@defer` directive

xecution of the current fragment to indicate deprioritization of the current fragment. A query with `@defer` directive
will cause the request to potentially return multiple responses, where non-deferred data is delivered in the initial re
sponse and data deferred is delivered in a subsequent response. `@include` and `@skip` take precedence over `@defer`."
directive @defer("If this argument label has a value other than null, it will be passed on to the result of this defer
directive. This label is intended to give client applications a way to identify to which fragment a deferred result bel
ongs to." label: String "Deferred when true." if: Boolean) on FRAGMENT_SPREAD | INLINE_FRAGMENT

"The `@specifiedBy` directive is used within the type system definition language to provide a URL for specifying the be
havior of custom scalar definitions."
directive @specifiedBy("The specifiedBy URL points to a human-readable specification. This field will only read a resul
t for scalar types." url: String!) on SCALAR

"The `@stream` directive may be provided for a field of `List` type so that the backend can leverage technology such as
asynchronous iterators to provide a partial list in the initial response, and additional list items in subsequent respo
nses. `@include` and `@skip` take precedence over `@stream`."
directive @stream("If this argument label has a value other than null, it will be passed on to the result of this strea
m directive. This label is intended to give client applications a way to identify to which fragment a streamed result b
elongs to." label: String "The initial elements that shall be send down to the consumer." initialCount: Int! = 0 "Strea
med when true." if: Boolean) on FIELD

"The `Byte` scalar type represents non-fractional whole numeric values. Byte can represent values between 0 and 255."
scalar Byte

"The `DateTime` scalar represents an ISO-8601 compliant date time type."
scalar DateTime @specifiedBy(url: "https:\/\/www.graphql-scalars.com\/date-time")

"The `Long` scalar type represents non-fractional signed whole 64-bit numeric values. Long can represent values between
-(2^63) and 2^63 - 1."
scalar Long

scalar UUID @specifiedBy(url: "https:\/\/tools.ietf.org\/html\/rfc4122")

"The UnsignedInt scalar type represents a unsigned 32-bit numeric non-fractional value greater than or equal to 0."
scalar UnsignedInt

Queries
ConneX exposes the following GraphQL queries:

Query Description
adapterMetrics Get metrics for the specified adapter.
adapters Look up all the known adapters connected to this instance of ConneX.
entities Look up all the known entities connected to this instance of ConneX.
entityTypes Look up all the known entity types that can be connected to this instance of ConneX.
handlerMetrics Get metrics for the specified PSV system.
latestAdapterStatistics Get the latest metric entries for the specified adapter.
latestHandlerStatistics Get the latest metric entries for the specified PSV system.
license Get the installed license information.
message Get the last received MQTT message.
messages Get all MQTT messages.
programmers Look up all the known programmers connected to this instance of ConneX.
programmerTypes Look up all the known programmer system types that can be connected to this instance of ConneX.
system Look up a singular PSV system by its database ID.
systems Look up all the known PSV systems connected to this instance of ConneX.
systemTypes Look up all the known PSV system types that can be connected to this instance of ConneX.

adapterMetrics

Type: [AdapterMetrics]

Get metrics for the specified adapter.

Arguments
Name Description
adapterIdentifier (String)The adapter's unique identifier.
interval (Interval) An Interval defining how far back to query.
timeBucket (Interval) An Interval over which the metrics will be aggregated.

Example
Request Response

query{
 adapterMetrics(adapterIdentifier: "222-032-205-139-137-224-207-100-238"
 interval: "1 hour"
 timeBucket: "15 minutes")
 {
 timeStamp
 blankCheckDuration
 eraseDuration
 programmingDuration
 verifyDuration
 }
}

GraphQL

adapters

Type: AdapterModel

Look up all the known adapters connected to this instance of ConneX.

Example
Request Response

{
 "data": {
 "adapterMetrics": [
 {
 "timeStamp": "2022-10-06T11:30:00.000-07:00",
 "blankCheckDuration": 901358,
 "eraseDuration": 896337,
 "programmingDuration": 904021,
 "verifyDuration": 895560
 },
 {
 "timeStamp": "2022-10-06T11:15:00.000-07:00",
 "blankCheckDuration": 895828,
 "eraseDuration": 904213,
 "programmingDuration": 898582,
 "verifyDuration": 898548
 },
 {
 "timeStamp": "2022-10-06T11:00:00.000-07:00",
 "blankCheckDuration": 895486,
 "eraseDuration": 895593,
 "programmingDuration": 902716,
 "verifyDuration": 896741
 },
 {
 "timeStamp": "2022-10-06T10:45:00.000-07:00",
 "blankCheckDuration": 900471,
 "eraseDuration": 897392,
 "programmingDuration": 898490,
 "verifyDuration": 899448
 }
]
 }
}

JSON

query {
 adapters {
 adapterId
 }
}

GraphQL

entities

Type: [Entity]

Look up all the known entities connected to this instance of ConneX.

Example
Request Response

{
 "data": {
 "adapters": [
 {
 "adapterId": "110008"
 },
 {
 "adapterId": "110008"
 },
 {
 "adapterId": "110008"
 },
 {
 "adapterId": "110008"
 },
 {
 "adapterId": "310008"
 },
 {
 "adapterId": "310008"
 }
]
 }
}

JSON

query {
 entities {
 entityIdentifier
 entityType
 entityName
 }
}

GraphQL

entityTypes

Type: [EntityType!]

Look up all the known entity types that can be connected to this instance of ConneX.

Example
Request Response

{
 "data": {
 "entities": [
 {
 "entityIdentifier": "42707786-1a5b-4b2f-9c0d-9512bb30cbb0",
 "entityType": "HANDLER",
 "entityName": "PSV2800 #1"
 },
 {
 "entityIdentifier": "ee232edf-05ef-4407-a4e4-1d0431099e97",
 "entityType": "HANDLER",
 "entityName": "PSV3000 #1"
 },
 {
 "entityIdentifier": "853be1da-0847-4a85-b499-208c37ce40fb",
 "entityType": "HANDLER",
 "entityName": "PSV5000 #1"
 },
 {
 "entityIdentifier": "777425b0-300e-43d6-b40a-0f94c57559fa",
 "entityType": "HANDLER",
 "entityName": "PSV5000 #2"
 },
 {
 "entityIdentifier": "5573f981-10c4-4466-adf2-c68039cb9983",
 "entityType": "HANDLER",
 "entityName": "PSV7000 #1"
 },
 {
 "entityIdentifier": "ee496e4a-2b14-4cd2-af6a-bb92ad9fa015",
 "entityType": "HANDLER",
 "entityName": "PSV7000 #2"
 },
 {
 "entityIdentifier": "D1:AD:0D:28:26:9E",
 "entityType": "PROGRAMMER",
 "entityName": "FC - 1"
 },
 {
 "entityIdentifier": "D1:AD:0D:28:26:9E_Socket0",
 "entityType": "ADAPTER",
 "entityName": null
 }
]
 }
}

JSON

query {
 entityTypes
}

GraphQL

handlerMetrics

Type: [HandlerMetrics]

Get metrics for the specified PSV system.

Arguments
Name Description
handlerIdentifier (String)The PSV system's unique identifier.
interval (Interval) An Interval defining how far back to query.
timeBucket (Interval) An Interval over which the metrics will be aggregated.

Example
Request Response

{
 "data": {
 "entityTypes": [
 "HANDLER",
 "PROGRAMMER",
 "ADAPTER",
 "JOB"
]
 }
}

JSON

query{
 handlerMetrics(handlerIdentifier: "42707786-1a5b-4b2f-9c0d-9512bb30cbb0"
 interval: "1 hour"
 timeBucket: "15 minutes")
 {
 timeStamp
 jobState
 uptime
 jobProcessingTime
 unitsPerHour
 yield
 }
}

GraphQL

latestAdapterStatistics

Type: [AdapterStatistics]

Get the latest statitistics for the specified adapter.

Arguments
Name Description
entityIdentifier (String)The adapter's unique identifier.

Example
Request Response

{
 "data": {
 "handlerMetrics": [
 {
 "timeStamp": "2022-10-06T12:01:57.173-07:00",
 "jobState": null,
 "uptime": 892,
 "jobProcessingTime": null,
 "unitsPerHour": 500,
 "yield": 0.9923533439853912
 },
 {
 "timeStamp": "2022-10-06T11:46:57.173-07:00",
 "jobState": null,
 "uptime": 597,
 "jobProcessingTime": null,
 "unitsPerHour": 503,
 "yield": 0.9923533439853912
 },
 {
 "timeStamp": "2022-10-06T11:31:57.173-07:00",
 "jobState": null,
 "uptime": 1187,
 "jobProcessingTime": 873,
 "unitsPerHour": 498,
 "yield": 0.9923533439853912
 },
 {
 "timeStamp": "2022-10-06T11:16:57.173-07:00",
 "jobState": null,
 "uptime": 890,
 "jobProcessingTime": 884,
 "unitsPerHour": 487,
 "yield": 0.9923533439853912
 }
]
 }
}

JSON

latestHandlerStatistics

Type: [HandlerStatistics]

Get the latest statistics for the specified PSV system.

Arguments
Name Description
entityIdentifier (String)The PSV system's unique identifier.

Example
Request Response

query {
 latestAdapterStatistics(
 entityIdentifier: "136-043-225-168-137-224-207-100-238"
)
 {
 adapterId
 cleanCount
 lifetimeActuationCount
 lifetimeContinuityFailCount
 lifetimeFailCount
 lifetimePassCount
 socketIndex
 adapterState
 }
}

GraphQL

{
 "data": {
 "latestAdapterStatistics": {
 "adapterId": "110008",
 "cleanCount": 2,
 "lifetimeActuationCount": 4955,
 "lifetimeContinuityFailCount": 25,
 "lifetimeFailCount": 70,
 "lifetimePassCount": 9713,
 "socketIndex": 4,
 "adapterState": "VALIDATED"
 }
 }
}

JSON

license

Type: [LicenseModel]

Get the installed license information.

Example
Request Response

query {
 latestHandlerStatistics(entityIdentifier:"4826196c-0866-44f4-afa0-d331bcfd04eb")
 {
 currentJob
 availability
 uptime
 totalPass
 totalFail
 systemYield
 programmerYield
 handlerYield
 uPH
 jobCompletionEstimate
 }
}

GraphQL

{
 "data": {
 "latestHandlerStatistics": {
 "currentJob": "MX 29LV160DBTI",
 "availability": "100.00",
 "uptime": "100.00",
 "totalPass": 189,
 "totalFail": 3,
 "systemYield": "98.44",
 "programmerYield": "98.44",
 "handlerYield": "100.00",
 "uPH": 1859,
 "jobCompletionEstimate": "6/8/2022 11:35:18 AM"
 }
 }
}

JSON

query {
 license {
 licenseType
 maxConnections
 availableConnections
 conneXAnnualMaintenanceContract
 timedLicenseExpiration
 }
}

GraphQL

message

Type: MessageModel

Get the last received MQTT message.

Example
Request Response

messages

Type: MessageModelCollectionSegment

Get all MQTT messages using paging.

Arguments
Name Description
skip (Int) The number of messages to skip.
take (Int) The number of messages to return.

where (MessageModelFilterInput) The Filter to apply to the messages.
order ([MessageModelSortInput!])The sort order to apply to the messages.

{
 "data": {
 "license": {
 "licenseType": "Perpetual",
 "maxConnections": 10,
 "availableConnections": 9,
 "conneXAnnualMaintenanceContract": "2023-06-01T00:00:00.000-07:00",
 "timedLicenseExpiration": "0001-01-01T00:00:00.000-08:00"
 }
 }
}

JSON

query {
 message
 {
 topic
 timestamp
 }
}

GraphQL

{
 "data": {
 "message": {
 "topic": "connex/programmer/currentprogrammerstatuses",
 "timestamp": "2021-12-21T21:48:28.514-08:00"
 }
 }
}

JSON

Name Description

Example
Request Response

programmers

Type: [ProgrammerModel]

Look up all the known programmers connected to this instance of ConneX.

Example
Request Response

query {
 messages (take:1) {
 totalCount
 items {
 topic
 contentType
 timestamp
 messageModelId
 payloadAsString
 }
 }
}

GraphQL

{
 "data": {
 "messages": {
 "totalCount": 138,
 "items": [
 {
 "topic": "connex/programmer/lumenx/legacy/connected",
 "contentType": null,
 "timestamp": "2022-01-05T21:38:26.835-08:00",
 "messageModelId": "f89a9ea5-cb22-4c32-811e-9fe08f3e6cab",
 "payloadAsString": "{\"ProgrammerIdentifier\":\"\",\"HandlerIdentifer\":\"323bcb6c-3e40-4678-98a8-d373e3
8144af\",\"IpAddress\":\"127.0.0.1\",\"ProgrammerType\":1,\"ProgrammerName\":\"LX-1\",\"Adapters\":[]}"
 }
]
 }
 }
}

JSON

query {
 programmers {
 programmerId
 ipAddress
 programmerType
 }
}

GraphQL

programmerTypes

Type: [ProgrammerType!]

Look up all the known programmer system types that can be connected to this instance of ConneX.

Example
Request Response

{
 "data": {
 "programmers": [
 {
 "programmerId": 2,
 "ipAddress": "192.168.1.1",
 "programmerType": "FLASH_CORE"
 },
 {
 "programmerId": 3,
 "ipAddress": "192.168.1.2",
 "programmerType": "FLASH_CORE"
 },
 {
 "programmerId": 4,
 "ipAddress": "192.168.1.3",
 "programmerType": "FLASH_CORE"
 },
 {
 "programmerId": 5,
 "ipAddress": "192.168.1.4",
 "programmerType": "FLASH_CORE"
 },
 {
 "programmerId": 6,
 "ipAddress": "192.168.1.5",
 "programmerType": "FLASH_CORE"
 },
 {
 "programmerId": 7,
 "ipAddress": "10.0.0.0",
 "programmerType": "LUMEN_X"
 }
]
 }
}

JSON

query {
 programmerTypes
}

GraphQL

system

Type: Handler

Look up a singular PSV system by its database ID.

Arguments
Name Description
databaseId (Int!)The database identifier of the handler.

Example
Request Response

systems

Type: [Handler]

Look up all the known PSV systems connected to this instance of ConneX.

Example
Request Response

{
 "data": {
 "programmerTypes": [
 "FLASH_CORE",
 "LUMEN_X"
]
 }
}

JSON

query {
 system (databaseId: 1) {
 handlerId
 }
}

GraphQL

{
 "data": {
 "system": {
 "handlerId": 1,
 "handlerType": "PSV2800",
 "ipAddress": "172.16.0.1",
 "hostName": "PSV-1",
 "machineFactory": null
 }
 }
}

JSON

systemTypes

query {
 systems {
 handlerId
 handlerType
 ipAddress
 hostName
 machineFactory
 }
}

GraphQL

{
 "data": {
 "systems": [
 {
 "handlerId": 1,
 "handlerType": "PSV2800",
 "ipAddress": "172.16.0.1",
 "hostName": "PSV-1",
 "machineFactory": null
 },
 {
 "handlerId": 2,
 "handlerType": "PSV3000",
 "ipAddress": "172.16.0.2",
 "hostName": "PSV-2",
 "machineFactory": null
 },
 {
 "handlerId": 3,
 "handlerType": "PSV5000",
 "ipAddress": "172.16.0.3",
 "hostName": "PSV-3",
 "machineFactory": null
 },
 {
 "handlerId": 4,
 "handlerType": "PSV5000",
 "ipAddress": "172.16.0.11",
 "hostName": "PSV-6",
 "machineFactory": null
 },
 {
 "handlerId": 5,
 "handlerType": "PSV7000",
 "ipAddress": "172.16.0.9",
 "hostName": "PSV-4",
 "machineFactory": null
 },
 {
 "handlerId": 6,
 "handlerType": "PSV7000",
 "ipAddress": "172.16.0.10",
 "hostName": "PSV-5",
 "machineFactory": null
 }
]
 }
}

JSON

Type: [HandlerType!]

Look up all the known PSV system types that can be connected to this instance of ConneX.

Example
Request Response

query {
 systemTypes
}

GraphQL

{
 "data": {
 "systemTypes": [
 "DESKTOP",
 "PSV2800",
 "PSV3000",
 "PSV5000",
 "PSV7000"
]
 }
}

JSON

Objects
ConneX exposes the following GraphQL objects:

AdapterMetrics

Represents metrics related to an adapter.

Fields
Name Description
blankCheckDuration (Int!) The duration for a blank check operation (in milliseconds).
eraseDuration (Int!) The duration for an erase operation (in milliseconds).
id (Long!) The metric's index.
identifier (String!) The entity identifier for the metric.
programmingDuration (Int!)The duration for a programming operation (in milliseconds).
timeStamp (DateTime!) The time stamp for the metric.
verifyDuration (Int!) The duration for a verify operation (in milliseconds).

AdapterModel

Represents an adapter for a programmer.

Fields
Name Description
adapterKey (Int!) The database key for the adapter.
entity (Entity) The associated entity for this adapter.
programmer (ProgrammerModel)The last associated programmer for this adapter.
adapterId (String) The adapter's part number identifier.

AdapterStatistics

Represents an adapter's statistics.

Fields
Name Description
adapterId (String) The adapter's ID.
cleanCount (UnsignedInt!) The adapter's clean count.
lifetimeActuationCount (UnsignedInt!) The adapter's lifetime actuation count.
lifetimeContinuityFailCount : (UnsignedInt!)The adapter's lifetime continuity fail count.
lifetimeFailCount (UnsignedInt!) The adapter's lifetime fail count.
lifetimePassCount (UnsignedInt!) The adapter's lifetime pass count.
socketIndex (Int!) The adapter's socket index.
adapterState (AdapterState!) The adapter's AdapterState .

CollectionSegmentInfo

Information about the offset pagination.

Fields
Name Description
hasNextPage (Boolean!) Indicates whether more items exist following the set defined by the clients arguments.

hasPreviousPage (Boolean!)Indicates whether more items exist prior the set defined by the clients arguments.
Name Description

Entity

Represents an abstract component that is connected to the ConneX system.

Fields
Name Description
id (Int!) The database key for the entity.
entityIdentifier (String)The unique identifier for the entity.
entityType (EntityType!) The type the entity represents.
entityName (String) The given name of the entity.

Handler

Represents a PSV system connected to ConneX.

Fields
Name Description
handlerId (Int!) The database key for the PSV system.
entity (Entity) The associated entity for this PSV system.
programmers ([ProgrammerModel])The associated programmers for this PSV system.
handlerType (HandlerType!) The PSV system's type (e.g. PSV2800/3000/5000/7000).
ipAddress (String) The PSV system's IP address.
hostName (String) The PSV system's computer host name.
machineFactory (String) The PSV system's associated factory.

HandlerMetrics

Represents metrics related to a handler system.

Fields
Name Description
id (Long!) The metric's index.
identifier (String) The entity identifier for the metric.
jobProcessingTime (String)The job processing time since the last measurement.
jobState (String) The job's current state.
timeStamp (DateTime!) The time stamp for the metric.
unitsPerHour (Int) The system's UPH (units per hour).
uptime (Int) The uptime of the system since the last measurement.

yield (Float) The system's programmer yield.

HandlerStatistics

Represents a handler system's statistics.

Fields
Name Description
currentJob (String) The current job the system is running.
availability (Float!) The system's availability.
uptime (String) The system's uptime.
totalPass (Int!) The total number of passed devices.

totalFail (Int!) The total number of failed devices.
systemYield (String) The system's yield.
programmerYield (String) The system's programmer yield.
handlerYield (String) The system's handler yield.
uPH (Int!) The system's UPH (units per hour).
jobCompletionEstimate (String)The system's job completion estimate.

Name Description

Interval

Represents a time interval as a String . Interval values can be written using the following syntax:

quantity unit

where quantity is an Int! and unit is one of the following:

Unit ISO 8601 AbbreviationExample
microsecond 1 microsecond(s)
millisecond 1 millisecond(s)
second S 1 second(s)
minute M (in the time part) 1 minute(s)
hour H 1 hour(s)
day D 1 day(s)
week W 1 week(s)
month M (in the date part) 1 month(s)
year Y 1 year(s)
decade 1 decade(s)
century 1 century(ies)
millenium 1 millenium(s)

LicenseModel

Represents the license information for the ConneX Service.

Fields
Name Description
availableConnections (Int!) The number of connections still available for use.
conneXAnnualMaintenanceContract (DateTime!)The expiration date for the ConneX Annual Maintenence Contract.
licenseType (String) The type of license installed.
maxConnections (Int!) The maximum number of connections available with the installed license.
timedLicenseExpiration (DateTime!) The expiration date of the license (if applicable).

The field licenseType has the following values:

Value Description
NoLicense No ConneX license has been installed.
Perpetual License is perpetual for the purchased version.
Timed License is time bound based on purchase agreement.

MessageModel

Represents a message received over MQTT.

Fields
Name Description
topic (String) The MQTT topic.
contentType (String) The MQTT message type.
timestamp (DateTime!) The message timestamp.
messageModelId (UUID!) The unique UUID message identifier.

payload ([Byte!]) The message payload in raw bytes.
payloadAsString (String)The message payload converted to a UTF8 string.

Name Description

MessageModelCollectionSegment

Represents a collection of MessageModel (used in pagination).

Fields
Name Description
items ([MessageModel]) The items in the current page.
pageInfo (CollectionSegmentInfo!)Information to aid in pagination.
totalCount (Int!) The total message count for the query.

ProgrammerModel

Represents a programmer connected to ConneX.

Fields
Name Description
programmerId (Int!) The database key for the programmer.
entity (Entity) The associated entity for this programmer.
handler (Handler) The associated handler for this programmer.
adapters ([AdapterModel]) A collection of adapters associated with this programmer.
ipAddress (String) The IP address of the programmer.
programmerType (ProgrammerType!)The type of programmer.

Interfaces
ConneX exposes the following GraphQL interfaces:

None

Enums
ConneX exposes the following GraphQL enums:

AdapterState

Represents the different state an adapter can be in.

Values Description
NOT_INSERTED Adapter is not inserted.
INSERTED Adapter is inserted.
VALIDATED Adapter is inserted and validated.
VALIDATE_FAILEDAdapter validation failed.
UNKNOWN Adapter state is unknown.
POWER_FAULT Adapter experienced a power fault.

EntityType

Represents the different types an entity can represent.

Values Description
HANDLER Represents a PSV system.
PROGRAMMERRepresents a programmer (e.g. LumenX or FlashCORE).
ADAPTER Represents a programmer adapter.
JOB Represents a programming job.

HandlerType

Represents the different types a PSV system object can be.

Values Description
DESKTOPRepresents a desktop programming system.
PSV2800 Represents a PSV2800 programming system.
PSV3000 Represents a PSV3000 programming system.
PSV5000 Represents a PSV5000 programming system.
PSV7000 Represents a PSV7000 programming system.

ProgrammerType

Represents the different types a programmer object can be.

Values Description
FLASH_CORERepresents a FlashCORE III programmer.
LUMEN_X Represents a LumenX programmer.

SortEnumType

Represents the different types of sorting that can be applied when filtering.

ValuesDescription
ASC Sort the values in ascending order.
DESC Sort the values in descending order.

Objects
ConneX exposes the following GraphQL input objects:

ComparableByteOperationFilterInput

Represents filters for a Byte type.

Input Fields
Name Description
eq (Byte) Filter results to when the Byte value equals the given value.
gt (Byte) Filter results to when the Byte value is greater than the given value.
gte (Byte) Filter results to when the Byte value is greater than or equal to the given value.
in ([Byte!]) Filter results to when the Byte value is in the collection of the given values.
lt (Byte) Filter results to when the Byte value is less than the given value.
lte (Byte) Filter results to when the Byte value is less than or equal to the given value.
neq (Byte) Filter results to when the Byte value does not equals the given value.
ngt (Byte) Filter results to when the Byte value is not greater than the given value.

ngte (Byte) Filter results to when the Byte value is not greater than or equal to the given value.

nin ([Byte!])Filter results to when the Byte value is not in the collection of the given values.
nlt (Byte) Filter results to when the Byte value is not less than the given value.
nlte (Byte) Filter results to when the Byte value is not less than or equal to the given value.

ComparableDateTimeOperationFilterInput

Represents filters for a DateTime type.

Input Fields
Name Description
eq (DateTime) Filter results to when the DateTime value equals the given value.
gt (DateTime) Filter results to when the DateTime value is greater than the given value.
gte (DateTime) Filter results to when the DateTime value is greater than or equal to the given value.
in ([DateTime!]) Filter results to when the DateTime value is in the collection of the given values.
lt (DateTime) Filter results to when the DateTime value is less than the given value.
lte (DateTime) Filter results to when the DateTime value is less than or equal to the given value.
neq (DateTime) Filter results to when the DateTime value does not equals the given value.
ngt (DateTime) Filter results to when the DateTime value is not greater than the given value.
ngte (DateTime) Filter results to when the DateTime value is not greater than or equal to the given value.
nin ([DateTime!])Filter results to when the DateTime value is not in the collection of the given values.
nlt (DateTime) Filter results to when the DateTime value is not less than the given value.
nlte (DateTime) Filter results to when the DateTime value is not less than or equal to the given value.

ComparableGuidOperationFilterInput

Represents filters for a UUID type.

Input Fields
Name Description
eq (UUID) Filter results to when the UUID value equals the given value.
gt (UUID) Filter results to when the UUID value is greater than the given value.
gte (UUID) Filter results to when the UUID value is greater than or equal to the given value.
in ([UUID!]) Filter results to when the UUID value is in the collection of the given values.
lt (UUID) Filter results to when the UUID value is less than the given value.
lte (UUID) Filter results to when the UUID value is less than or equal to the given value.
neq (UUID) Filter results to when the UUID value does not equals the given value.

ngt (UUID) Filter results to when the UUID value is not greater than the given value.
ngte (UUID) Filter results to when the UUID value is not greater than or equal to the given value.
nin ([UUID!])Filter results to when the UUID value is not in the collection of the given values.
nlt (UUID) Filter results to when the UUID value is not less than the given value.

nlte (UUID) Filter results to when the UUID value is not less than or equal to the given value.

Name Description

ListComparableByteOperationFilterInput

Represents filters for a [Byte] type.

Input Fields
Name Description
all (ComparableGuidOperationFilterInput) Filter results to when all match the given. ComparableGuidOperationFilterInput
any (Boolean) TODO: Figure out what this does.
none (ComparableGuidOperationFilterInput)Filter results to when none match the given ComparableGuidOperationFilterInput .
some (ComparableGuidOperationFilterInput)Filter results to when some match the given ComparableGuidOperationFilterInput .

MessageModelFilterInput

Represents filters for a [MessageModel] type.

Input Fields
Name Description
and ([MessageModelFilterInput]) Add additional filtering criteria to restrict results.
contentType (StringOperationFilterInput) Filter results based on the contentType field.
messageModelId (ComparableGuidOperationFilterInput)Filter results based on the messageModelId
or [MessageModelFilterInput] Add additional filtering criteria to expand results.
payload (ListComparableByteOperationFilterInput) Filter results based on the payload field.
timestamp (ComparableDateTimeOperationFilterInput) Filter results based on the timestamp field.
topic (StringOperationFilterInput) Filter results based on the topic field.

MessageModelSortInput

Represents sort orders for a [MessageModel] type.

Input Fields
Name Description
contentType (SortEnumType) Sort results based on the contentType field.
messageModelId (SortEnumType)Sort results based on the messageModelId
timestamp (SortEnumType) Sort results based on the timestamp field.
topic (SortEnumType) Sort results based on the topic field.

StringOperationFilterInput

Represents filters for a String type.

Input Fields
Name Description
and ([StringOperationFilterInput!])Add additional filtering criteria to restrict results.
contains (String) Filter results to when the String value contains the given value.
endsWith (String) Filter results to when the String value ends with the given value.

eq (String) Filter results to when the String value equals the given value.
in ([String]) Filter results to when the Byte value is in the collection of the given values.
ncontains (String) Filter results to when the String value does not contain the given value.
nendsWith (String) Filter results to when the String value does not end with the given value.
neq (String) Filter results to when the String value does not equals the given value.
nin ([String]) Filter results to when the String value is not in the collection of the given values.
nstartswith ([String]) Filter results to when the String value does not start with the given value.
or ([StringOperationFilterInput!]) Add additional filtering criteria to expand results.
startswith ([String]) Filter results to when the String value starts with the given value.

Name Description

Scalars
ConneX exposes the following GraphQL scalars:

Name Description
Boolean The Boolean scalar type represents true or false .
Byte The Byte scalar type represents non-fractional whole numeric values. Byte can represent values between 0 and 255.
DateTimeThe DateTime scalar represents an ISO-8601 compliant date time type.
Float The Float scalar type represents signed double-precision fractional values as specified by IEEE 754.

Int
The Int scalar type represents non-fractional signed whole numeric values. Int can represent values between -(2^31) and 2^31
- 1.

Long The Long scalar type represents non-fractional signed whole 64-bit numeric values. Long can represent values between -(2^63)
and 2^63 - 1.

String
The String scalar type represents textual data, represented as UTF-8 character sequences. The String type is most often used by
GraphQL to represent free-form human-readable text.

UUID A field whose value is a generic Universally Unique Identifier.

http://en.wikipedia.org/wiki/IEEE_floating_point

Automated Handling software
Below, you will find the MQTT events that are published/subscribed relating to:

AH700
CH700

AH700
AH700 software is used to control the following Data I/O handling system:

PSV7000

CH700
CH700 software is used to control the following Data I/O handling systems:

PSV5000
PSV3500
PSV3000

Events
References to "x" (in "xh700" and "xhsessionid") below, should be replaced with "a" or "c" when subscribing to AH700 or CH700 topics and
replaced with "A" or "C" when retrieving the version from the AH700 version field (xH700Version).

Below are the events that PSV systems publish:

Event Description
Begin Job Session Event fired when xH700 begins running a job.
Device Complete Event fired after the handler places a device in the output media.
Device Inspection Event fired after the handler inspects a part at 2D and/or 3D station.
End Job Session Event fired when xH700 finishes running a job.
Light Tower StatusEvent fired when the light tower state changes.
Marking Event fired after the handler marks a part.
Pick Part Event fired when the handling system picks up a part.
Place Part Event fired when the handler places a part.
Shutdown Event fired when xH700 shuts down gracefully, after xH700 is past its splash screen.
Startup Event fired after xH700 "Start" button is pressed.
System Statistics Event fired periodically providing the current system statistics.
System Status Event fired when the status changes in xH700.
User Created Event fired when an xH700 user is created.
User Deleted Event fired when an xH700 user is deleted.
User Login Event fired when a user attempts to log in to xH700.
User Logout Event fired when a user logs out of xH700.

Begin Job Session

Topic: xh700/beginrun/{hostname}/{xhsessionid}

Event fired when xH700 begins running a job.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
2DInspectionProjectFile (string) The full path of the file used for 2D inspection.

3DInspectionProjectFile (string) The full path of the file used for 3D inspection.

IgnoreProgrammers (string) True if programmers are ignored, otherwise False .
LaserMarkingProjectFile (string) The full path of the file used for laser marking

MachineID (string) The machine identifier.
MachineParametersFile (string) The contents of the file used for machine parameters.
PackageParametersFile (string) The contents of the file used for package parameters.
Sumcheck (string) The checksum for the job that is starting.
TaskName (string) The name of the job that is starting.
VisionInspectionProjectFile (string)(CH700 only) The full path of the file used for vision inspection.
WinAH400INIFile (string) The contents of the WinAH400.ini file used.
xH700Version (string) The version of the installed xH700 software.

Name Description

Device Complete

Topic: xh700/devicecomplete/{hostname}/{xhsessionid}

Event fired after the handler places a device in the output (pass or fail) media.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
DeviceID (ulong) The identification number assigned by the handling system.
HandlerErrorCode (enum)The HandlerErrorCode of the handler.
Status (string) The OperationStatus indicating the state of the device.

Device Inspection

Topic: xh700/operations/inspection/{hostname}/{xhsessionid}

Event fired after the handler inspects a part at 2D and/or 3D station.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
DeviceID (ulong) The unique device identifer.
InspectionResult (string)A InspectionResult representing the result of the device inspection.
PickHead (uint) The pick head end effector.

End Job Session

Topic: xh700/endrun/{hostname}/{xhsessionid}

Event fired when xH700 finishes running a job.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
DevicesFailedOn3DSystem (int) The number of devices that failed as a result of the 3D system.

DevicesFailedOnLaser (int) The number of devices that failed as a result of the laser.

DevicesFailedOnProgrammers (int)The number of devices that failed as a result of programming.
DevicesFailedREST (uint) The number of devices that failed recurrent empty socket test (REST).
DevicesFailedVision (uint) The number of devices that failed vision inspection.

DevicesMissingInUse (uint) The number of devices missing in use.
DevicesPickedInput (ulong) The number of devices picked from the input media.
EndingSerialNumber (string) The ending serial number for the job session.
FailQuantity (ulong) The number of devices that failed in the job session.
IgnoreProgrammers (string) True if programmers are ignored, otherwise False .
InputMedia (string) The input location media type.
JobAssistanceTime (string) The job assistance time.
JobProcessingTime (string) The job processing time.
JobThroughput (ulong) The job throughput of the job session.
NominalThroughput (double) The nominal throughput of the job session.
OutputMedia (string) The output location media type.
PassQuantity (ulong) The number of devices that passed in the job session.
Reject1 (string) The Reject1 location media type.
Reject2 (string) The Reject2 location media type.
SerialFailReport (string) The number of devices using serialization that failed.
SerialPassReport (string) The number of devices using serialization that passed.
StartingSerialNumber (string) The starting serial number for the job session.
TerminationReason (string) Provides a reason as to why the job session ended.

Name Description

Light Tower Status

Topic: xh700/lighttowerchanged/{hostname}/{xhsessionid}

Event fired when the light tower state changes.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
NewState (string)The new light tower TowerState indicated below
OldState (string)The old light tower TowerState indicated below

Marking

Topic: xh700/operations/marking/{hostname}/{xhsessionid}

Event fired after the handler marks a part.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
Cup (uint) The cup the device was marked on.
DeviceID (ulong)The unique device identifer.
Status (string) The OperationStatus indicating the result of a marking operation.

Pick Part

Topic: xh700/operations/pick/{hostname}/{xhsessionid}

Event fired when the handler picks up a part.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
DeviceID (ulong) The unique device identifer.
Location (string)The Location the device was picked from.
PickHead (uint) The pick head end effector used to pick the device.
Position (uint) The position within the given location.
Status (string) The OperationStatus indicating the result of the pick operation.

Place Part

Topic: xh700/operations/place/{hostname}/{xhsessionid}

Event fired when the handler places a part.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
DeviceID (ulong) The unique device identifer.
Location (string)The Location the device was picked from.
PickHead (uint) The pick head end effector used to pick the device.
Position (uint) The position within the given location.
Status (string) The OperationStatus indicating the result of the place operation.

Shutdown

Topic: xh700/shutdown/{hostname}/{xhsessionid}

Event fired when xH700 shuts down gracefully, after xH700 is past its splash screen.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
Active (bool)Always false.

Special Properties
Last Will and Testament

Startup

Topic: xh700/startup/{hostname}/{xhsessionid}

Event fired after xH700 "Start" button is pressed.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
Active (bool) Always false.
MachineType (enum)The MachineType representing the type of machine that is running.

Special Properties
Retained

System Statistics

Topic: xh700/systemstatistics/{hostname}/{xhsessionid}

Event fired periodically providing the current system statistics.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
DevicesFailedOn3DSystem (int)The number of devices that failed as a result of the 3D system.
DevicesFailedOnLaser (int) The number of devices that failed as a result of the laser.
DevicesFailedOnProgrammer

(int)
The number of devices that failed as a result of programming.

DevicesFailedREST (int) The number of devices that failed recurrent empty socket test (REST).
DevicesFailedVision (int) The number of devices that failed vision inspection.
DevicesPickedInput (int) The number of devices picked from the input media.

HandlerYield (string)
The percentage of devices that were picked from the input media and are placed in the output and reject
media.

JobAssistanceTime (string) The job assistance time.
JobCompletionEstimate

(string)
The estimated job completion time.

JobProcessingTime (string) The job processing time.

ProgrammerYield (string) The percentage of devices that passed programming.
SystemYield (string) The percentage of devices that were picked from the input media and are placed in the output media.
TotalFail (int) The number of devices that failed in the job session.
TotalPass (int) The number of devices that passed in the job session.
UPH (int) The job throughput (including operator intervention time) of the job session.

System Status

Topic: xh700/systemstatus/{hostname}/{xhsessionid}

Event fired when the status of xH700 changes.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
ErrorMessage (ErrorMessage)The ErrorMessage) of the handler.
RunState (enum) The RunState of the handler.

User Created

Topic: xh700/users/create/{hostname}/{xhsessionid}

Event fired when an xH700 user is created.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
Role (enum) The user's UserRole
Username (string)Username of the newly created user.

User Deleted

Topic: xh700/users/delete/{hostname}/{xhsessionid}

Event fired when an xH700 user is deleted.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
Username (string)Username of the deleted user.

User Login

Topic: xh700/users/login/{hostname}/{xhsessionid}

Event fired when a user attempts to log in to xH700.

Level Description
hostname The hostname of the PC that xH700 is running on.
UserSessionID The session ID for the current user of xH700.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
Success (bool) Indicates whether or not the login was successful.
Username (string)Username of the user who attempted to log in.

User Logout

Topic: xh700/users/logout/{hostname}/{xhsessionid}

Event fired when a user logs out of xH700.

Level Description
hostname The hostname of the PC that xH700 is running on.
xhsessionid The session ID for the current instance of xH700.

Fields
Name Description
Username (string)Username of the user who logged out.

Commands
References to "x" (in "xh700" and "xhsessionid") below, should be replaced with "a" or "c" when sending commands to AH700 or CH700.

Below are the commands that can be used to control xH700:

Command Description
Abort Job SessionInstruct xH700 to end a job session.

Pause Job SessionInstruct xH700 to pause a job session.

Abort Job Session

Topic: command/xh700/abortjob/{hostname}/{xhsessionid}

Instruct xH700 to end a job session. xH700 does not pick anymore devices from input, finishes the current devices in the work-envelope,
then stops.

Level Description
hostname The hostname of the PC that should be paused.
xhsessionid The session ID that should be paused.

Pause Job Session

Topic: command/xh700/pausejob/{hostname}/{xhsessionid}

Instruct xH700 to pause a job session.

Level Description
hostname The hostname of the PC that should be paused.
xhsessionid The session ID that should be paused.

Types
Types that different fields can return.

HandlerErrorCode

Type: enum

Represents the possible handler error codes assigned to rejected devices.

StateDescription
3 Device programming error.
12 Recurrent Empty Socket Test (REST) error; The device is not programmed.
15 Device laser marking error.
17 Device continuity error.
200 Device position inspection error.
201 Device 3D inspection error.

InspectionResult

Type: string

Represents the possible return values of a device inspection operation:

Fail CodeDescription
201 3D inspection failure.
901 2D inspection failure, unexpected device in pocket.
902 2D inspection failure, device not detected.

903 2D inspection failure, device detected but failed inspection.

904 2D inspection timeout failure.
PASS 2D Device passed 2D inspection
PASS 3D Device passed 3D inspection

Location

Type: string

Represents a physical location inside a PSV system.

Location Description
Laser The laser marking device.
Programmer A programmer (e.g. FlashCORE or LumenX).
Tape An input/output tape.
Tray An input/output tray.
Tube An input/output tube.

MachineType

Type: enum

Represents the type of PSV system.

Location Description
Desktop Mode System is running in desktop mode.
PSV3000 System is a PSV3000 machine.
PSV5000 System is a PSV5000 machine.
PSV7000 System is a PSV7000 machine.

OperationStatus

Type: string

Represents the possible return values for a pass/fail operation

PositionDescription
Fail Operation was unsuccessful.
Pass Operation was successful.

TowerState

Type: string

Represents the possible return values for tower statuses.

State Description
Alternating Green-Yellow Light tower is alternating between green and yellow lamps illuminated.
Alternating Yellow-Red Light tower is alternating between yellow and red lamps illuminated.
Alternating Yellow-Red with alarm Light tower is alternating the yellow and red lamp and emitting an audible alarm.
Flashing Red Light tower is flashing the red lamp exclusively.
Flashing red with alarm Light tower is flashing the red lamp exclusively and emitting an audible alarm.
Flashing Yellow Light tower is flashing the yellow lamp exclusively.
Flashing Yellow with alarm Light tower is flashing the yellow lamp exclusively and emitting an audible alarm.
Green Light tower has only the green lamp illuminated.
Off Light tower is off.
Red Light tower has only the Red lamp illuminated.
Yellow Light tower has only the yellow lamp illuminated.

UserRole

Type: enum

Represents the possible return values for a user's role.

Position Description
Operator User has operator level permissions.
Service User has service level permissions.
Supervisor User has supervisor level permissions.

RunState

Type: enum

Represents the possible return values for the job run state of xH700.

State Description
JobIdle The job has not been started.
JobPaused The job is paused.
JobRunning The job is running.
JobStopped The handler encountered an error and cannot continue the job.

DMS
Below, you will find the MQTT events that are published/subscribed relating to DMS:

Message Description
Begin DownloadEvent fired when DMS begins a job download.
End Download Event fired when DMS completes a job download.

Begin Download

Topic: dms/jobs/begindownload/{hostname}/{jobname}

Event fired when DMS begins a job download.

Level Description
hostnameThe hostname of the PC that DMS is running on.
jobname The name of the job.

Fields
Name Description
DownloadSize (ulong)The size of the job in bytes.

End Download

Topic: dms/jobs/enddownload/{hostname}/{jobname}

Event fired when DMS begins a job download.

Level Description
hostnameThe hostname of the PC that DMS is running on.
jobname The name of the job.

Fields
Name Description
Success (bool)Whether or not the download was sucessful.

Programmer
Below, you will find the MQTT events that are published/subscribed relating to a programmer:

Message Description
Adapter Inserted Event fired when an adapter is inserted into a programmer.
Adapter Removed Event fired when an adapter is removed from a programmer.
Programmer ConnectedEvent fired when a programmer connects to the system.
Programmer Offline Event fired when a programmer goes offline.
Programmer Online Event fired when a programmer comes online.
Programmer Removed Event fired when a programmer disconnects from the system.
Programming CompleteEvent fired when a programmer completes a programming cycle.

Adapter Inserted

Topic: programmers/adapter/inserted/{programmerserialnumber}/{adapterserialnumber}

Event fired when an adapter is inserted into a programmer.

Level Description
programmerserialnumberThe programmer's unique serial number.
adapterserialnumber The adapter's unique serial number.

Fields
Name Description
AdapterId (string) The adapter's identifier (e.g. 110008).
AdapterIndex (int) The adapter's index position.
SocketInformation ([SocketInfo]])The socket information for the adapter.

Adapter Removed

Topic: programmers/adapter/removed/{programmerserialnumber}/{adapterserialnumber}

Event fired when an adapter is inserted into a programmer.

Level Description
programmerserialnumberThe programmer's unique serial number.
adapterserialnumber The adapter's unique serial number.

Fields
Name Description
AdapterId (string)The adapter's identifier (e.g. 110008).
AdapterIndex (int)The adapter's index position.

Programmer Connected

Topic: connex/programmer/{programmertype}/legacy/connected

Event fired when a programmer establishes a connection to the system.

Level Description
programmertypeThe type of programmer that connected to the system: LumenX or FlashCore.

Fields
Name Description
Adapters ([AdapterInformation]])The adapters that are inserted in the programmer.
HandlerIdentifier (string) The Unique ID of the system handler that the programmer connected to.
IpAddress (string) The programmer's IP address.

ProgrammerIdentifier (string) The Unique ID of the specific programmer that connected to the system.
ProgrammerName (string) The name of the programmer that connected to the system.
ProgrammerType (string) The type of programmer that connected to the system: LumenX or FlashCore.

Name Description

Programmer Offline

Topic: programmers/poweroff/{programmerserialnumber}

Event fired when a programmer is powered off.

Level Description
programmerserialnumberThe programmer's unique serial number.

Programmer Online

Topic: programmers/poweron/{programmerserialnumber}

Event fired when a programmer is powered on.

Level Description
programmerserialnumberThe programmer's unique serial number.

Fields
Name Description
Adapters ([AdapterInformation]]) The adapters that are insert in the programmer.
AdditionalInformation (Dictionary<string, string>) The additional information for the programmer.
IpAddress (string) The programmer's IP address.
ProgrammerType (string) The programmer's type.
VersionInformation ([ProgrammerVersionInformation]])The version information for the different programmer components.

Programmer Removed

Topic: connex/programmer/{programmertype}/legacy/removed

Event fired when a programmer disconnects from the system.

Level Description
programmertypeThe type of programmer that disconnected from the system: LumenX or FlashCore.

Fields
Name Description
HandlerIdentifier (string) The Unique ID of the system handler that the programmer disconnected from.
IpAddress (string) The programmer's IP address.
ProgrammerIdentifier (string)The Unique ID of the specific programmer that disconnected from the system.
ProgrammerName (string) The name of the programmer that disconnected from the system.
ProgrammerType (string) The type of programmer that disconnected to the system: LumenX or FlashCore.

Programming Complete

Topic: connex/programmer/{programmertype}/legacy/programmingcomplete

Event fired when a programmer completes a data and/or security provisioning cycle of the part/device, thereby producing a device record.

Level Description
programmertypeThe type of programmer performing the data and/or security provisioning: LumenX or FlashCore.

Fields (at minimum)

Name Description
TimeStamp Date and Time (in UTC) of the programming event.
ProgrammerClass Type of programming unit (LumenX or FlashCore).
ProgrammerFirmwareVersion Firmware version of the programming unit.
ProgrammerSerialNumber Serial number of the programming unit.
ProgrammerSystemVersion System version of the programming unit.
ProgrammerIP IP address of the programming unit.
AdapterId Unique ID of the socket adapter on the programming unit.
AdapterSerialNumber Serial Number of the socket adapter on the programming unit.
AdapterCleanCount Number of times the "clean adapter module" reminder message was displayed to Operators.
AdapterLifetimeActuationCount Total number of times the socket adapter is mechanically actuated over the life of the adapter.
AdapterLifetimeContinuityCount Total number of devices that ran continuity check over the life of the adapter.
AdapterLifetimeContinuityFailCountTotal number of devices that failed continuity check over the life of the adapter.
AdapterLifetimeFailCount Total number of devices that failed to complete all operations of a job over the life of the adapter.
AdapterPassCount Total number of devices that passed all operations of a job over the life of the adapter.
AdapterSocketIndex Index number of a particular socket adapter.
AdapterState The state of the socket adapter.
AlgorithmID Unique ID that specifies the particular algorithm used in the job.
JobID Unique ID that specifies the particular job.
JobName Name of the job.
JobDescription Description of the job.
DeviceName Name of the device.
DeviceManufacturer Name of the device manufacturer.
ChipID Unique Chip ID on the device.
RawChipID Raw Chip ID on the device.
SocketIndex Index number of the socket adapter in which the device was placed and programmed.
Code Unique status code that represents Pass, Fail, or Other.
CodeName Name of the result code/status.
ProgramDuration Amount of time elapsed to complete programming.
VerifyDuration Amount of time elapsed to verify programming.
TimesTime Total time minus the time for Blank Check, Erase, Program, and Verify operations.
AlgoDeviceDetailsCID Unique Chip ID correlating the algorithm with the device.
BlankCheckDuration Amount of time elapsed to perform the Blank Check operation.
EraseDuration Amount of time elapsed to perform the Erase operation.
ErrorMessage Specific message describing the error.
SerialData Serialization pattern to be programmed into devices.

Types
Types that different fields can return.

AdapterInformation

Represents information about a programming adapter.

Fields
Name Description
SerialNumber (string) The adapter's unique serial number.
AdapterId (string) The adapter's identifier (e.g. 110008).
AdapterIndex (int) The adapter's index position.

SocketInformation ([SocketInfo]])The socket information for the adapter.

ProgrammerVersionInformation

Represents versioning information about a programmer component.

Fields
Name Description

VersionName (string)The name of the component name.
Version (string) The programmer's version.

Name Description

SocketInfo

Represents statistical information about a programming socket.

Fields
Name Description
CleanCount (string) The adapter's clean count.
LifetimeActuationCount (uint) The adapter's lifetime actuation count.
LifetimeContinuityFailCount (uint)The adapter's lifetime continuity fail count.
LifetimeFailCount (uint) The adapter's lifetime fail count.
LifetimePassCount (uint) The adapter's lifetime pass count.

Machine Manager
Below you will find the events and commands that are published/subscribed relating to the Machine Manager service.

Commands
Below are the commands that can be sent to a Machine Mangager instance:

Command Description

Launch DMS Launches DMS for use with LumenX programming.

Launch TaskLink Launches TaskLink for use with FlashCORE programming.

Launch DMS

Topic: command/dms/launchdms/{hostname}

Instruct the Machine Manager service to launch DMS for use with LumenX programming.

Level Description

hostname The hostname of the PC that should launch DMS.

A CommandResponse will be published on the topic machinemananger/commandresponse/{hostname] indicating the success (or failure) of
the command.

Fields
Name Description

JobName (string) Set the selected job by name to run.

JobPath (string) Set the selected job by file path to run.

Quantity (int) Must be a whole, non-zero number. Sets the number of devices to process when this Job runs.

Note
Providing both JobName and JobPath fields is not supported and will result in an error.

Launch TaskLink

Topic: command/tasklink/launchtasklink/{hostname}

Instruct the Machine Manager service to launch TaskLink for use with FlashCORE programming.

Level Description

hostname The hostname of the PC that should launch TaskLink.

Fields
Name Description

TaskName (string) Run the specified Task and exit TaskLink. The Task must be present in the current Task file.

AdministratorMode
(bool)

Run TaskLink in Administrator Mode.

BatchMode (bool) Run TaskLink in Batch Mode.

Quantity (int) Must be a whole, non-zero number. Sets the number of devices to process when this Job runs. This option
disables the prompt for pass quantity at run-time and is useful for Batch Mode operation.

Note
The TaskName field can also be used to launch with specific database such as task_database::task_name . See the TaskLink
documentation for more information.

A CommandResponse will be published on the topic machinemananger/commandresponse/{hostname] indicating the success (or failure) of
the command.

Common Types
The following types are shared across the different software components:

Types
Type Description
CommandResponse Represents a result of a command message.
ErrorMessage Represents an error message.

CommandResponse

Represents a result of a command message

Fields
Name Description
CommandTopic string The command topic that was sent.
ErrorMessage (ErrorMessage)If not successful, the accompanying error message.
Success (bool) Indicates if the command was successful or not.

ErrorMessage

Represents an error message.

Fields
Name Description
ErrorCode (string) The error code (if provided).
ErrorLevel (ErrorLevel)The error level.
Message (string) The error message.

Enumerations
EnumerationDescription
ErrorLevel The severity level of error.

ErrorLevel

The severity level of error.

Value Description
0 - WarningThe error is a warning, but operation can continue.
1 - Error The error is an error, operation cannot continue.
2 - Fatal The error is a fatal error, operation cannot continue and software may be in an unstable state.

	Cover Page
	Table of Contents
	Articles
	Getting Started
	Introduction
	Installation
	Configuration

	User Interface
	Manage
	Template Records
	Settings
	Users
	Logs

	Troubleshooting
	Overview
	ConneX Service

	Changelog

	API
	API Getting Started
	API Overview

	GraphQL
	Schema
	Queries
	Objects
	Interfaces
	Enums
	Input Objects
	Scalars

	MQTT
	Automated Handler
	DMS
	Programmer
	Machine Manager
	Common Types

